backgroundCube.glsl.js
Vertex Shader
varying vec3 vWorldDirection;
#include <common>
// <common>
#define PI 3.141592653589793
#define PI2 6.283185307179586
#define PI_HALF 1.5707963267948966
#define RECIPROCAL_PI 0.3183098861837907
#define RECIPROCAL_PI2 0.15915494309189535
#define EPSILON 1e-6
#ifndef saturate
// <tonemapping_pars_fragment> may have defined saturate() already
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
#define whiteComplement( a ) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
vec3 pow2( const in vec3 x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }
float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }
// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.
// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract( sin( sn ) * c );
}
#ifdef HIGH_PRECISION
float precisionSafeLength( vec3 v ) { return length( v ); }
#else
float precisionSafeLength( vec3 v ) {
float maxComponent = max3( abs( v ) );
return length( v / maxComponent ) * maxComponent;
}
#endif
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
#ifdef USE_ALPHAHASH
varying vec3 vPosition;
#endif
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
// dir can be either a direction vector or a normal vector
// upper-left 3x3 of matrix is assumed to be orthogonal
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
bool isPerspectiveMatrix( mat4 m ) {
return m[ 2 ][ 3 ] == - 1.0;
}
vec2 equirectUv( in vec3 dir ) {
// dir is assumed to be unit length
float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;
float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;
return vec2( u, v );
}
vec3 BRDF_Lambert( const in vec3 diffuseColor ) {
return RECIPROCAL_PI * diffuseColor;
} // validated
vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated
float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
// <begin_vertex>
vec3 transformed = vec3( position );
#ifdef USE_ALPHAHASH
vPosition = vec3( position );
#endif
#include <project_vertex>
// <project_vertex>
vec4 mvPosition = vec4( transformed, 1.0 );
#ifdef USE_BATCHING
mvPosition = batchingMatrix * mvPosition;
#endif
#ifdef USE_INSTANCING
mvPosition = instanceMatrix * mvPosition;
#endif
mvPosition = modelViewMatrix * mvPosition;
gl_Position = projectionMatrix * mvPosition;
gl_Position.z = gl_Position.w; // set z to camera.far
}
Fragment Shader
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#elif defined( ENVMAP_TYPE_CUBE_UV )
uniform sampler2D envMap;
#endif
uniform float flipEnvMap;
uniform float backgroundBlurriness;
uniform float backgroundIntensity;
uniform mat3 backgroundRotation;
varying vec3 vWorldDirection;
#include <cube_uv_reflection_fragment>
// <cube_uv_reflection_fragment>
#ifdef ENVMAP_TYPE_CUBE_UV
#define cubeUV_minMipLevel 4.0
#define cubeUV_minTileSize 16.0
// These shader functions convert between the UV coordinates of a single face of
// a cubemap, the 0-5 integer index of a cube face, and the direction vector for
// sampling a textureCube (not generally normalized ).
float getFace( vec3 direction ) {
vec3 absDirection = abs( direction );
float face = - 1.0;
if ( absDirection.x > absDirection.z ) {
if ( absDirection.x > absDirection.y )
face = direction.x > 0.0 ? 0.0 : 3.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
} else {
if ( absDirection.z > absDirection.y )
face = direction.z > 0.0 ? 2.0 : 5.0;
else
face = direction.y > 0.0 ? 1.0 : 4.0;
}
return face;
}
// RH coordinate system; PMREM face-indexing convention
vec2 getUV( vec3 direction, float face ) {
vec2 uv;
if ( face == 0.0 ) {
uv = vec2( direction.z, direction.y ) / abs( direction.x ); // pos x
} else if ( face == 1.0 ) {
uv = vec2( - direction.x, - direction.z ) / abs( direction.y ); // pos y
} else if ( face == 2.0 ) {
uv = vec2( - direction.x, direction.y ) / abs( direction.z ); // pos z
} else if ( face == 3.0 ) {
uv = vec2( - direction.z, direction.y ) / abs( direction.x ); // neg x
} else if ( face == 4.0 ) {
uv = vec2( - direction.x, direction.z ) / abs( direction.y ); // neg y
} else {
uv = vec2( direction.x, direction.y ) / abs( direction.z ); // neg z
}
return 0.5 * ( uv + 1.0 );
}
vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {
float face = getFace( direction );
float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );
mipInt = max( mipInt, cubeUV_minMipLevel );
float faceSize = exp2( mipInt );
highp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0; // #25071
if ( face > 2.0 ) {
uv.y += faceSize;
face -= 3.0;
}
uv.x += face * faceSize;
uv.x += filterInt * 3.0 * cubeUV_minTileSize;
uv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );
uv.x *= CUBEUV_TEXEL_WIDTH;
uv.y *= CUBEUV_TEXEL_HEIGHT;
#ifdef texture2DGradEXT
return texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb; // disable anisotropic filtering
#else
return texture2D( envMap, uv ).rgb;
#endif
}
// These defines must match with PMREMGenerator
#define cubeUV_r0 1.0
#define cubeUV_m0 - 2.0
#define cubeUV_r1 0.8
#define cubeUV_m1 - 1.0
#define cubeUV_r4 0.4
#define cubeUV_m4 2.0
#define cubeUV_r5 0.305
#define cubeUV_m5 3.0
#define cubeUV_r6 0.21
#define cubeUV_m6 4.0
float roughnessToMip( float roughness ) {
float mip = 0.0;
if ( roughness >= cubeUV_r1 ) {
mip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;
} else if ( roughness >= cubeUV_r4 ) {
mip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;
} else if ( roughness >= cubeUV_r5 ) {
mip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;
} else if ( roughness >= cubeUV_r6 ) {
mip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;
} else {
mip = - 2.0 * log2( 1.16 * roughness ); // 1.16 = 1.79^0.25
}
return mip;
}
vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {
float mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );
float mipF = fract( mip );
float mipInt = floor( mip );
vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );
if ( mipF == 0.0 ) {
return vec4( color0, 1.0 );
} else {
vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );
return vec4( mix( color0, color1, mipF ), 1.0 );
}
}
#endif
void main() {
#ifdef ENVMAP_TYPE_CUBE
vec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );
#elif defined( ENVMAP_TYPE_CUBE_UV )
vec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );
#else
vec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
texColor.rgb *= backgroundIntensity;
gl_FragColor = texColor;
#include <tonemapping_fragment>
// <tonemapping_fragment>
#if defined( TONE_MAPPING )
gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif
#include <colorspace_fragment>
// <colorspace_fragment>
gl_FragColor = linearToOutputTexel( gl_FragColor );
}