#define PHONG
uniform vec3 diffuse;
uniform vec3 emissive;
uniform vec3 specular;
uniform float shininess;
uniform float opacity;
#include <common>
// <common>
#define PI 3.141592653589793
#define PI2 6.283185307179586
#define PI_HALF 1.5707963267948966
#define RECIPROCAL_PI 0.3183098861837907
#define RECIPROCAL_PI2 0.15915494309189535
#define EPSILON 1e-6
#ifndef saturate
// <tonemapping_pars_fragment> may have defined saturate() already
#define saturate( a ) clamp( a, 0.0, 1.0 )
#endif
#define whiteComplement( a ) ( 1.0 - saturate( a ) )
float pow2( const in float x ) { return x*x; }
vec3 pow2( const in vec3 x ) { return x*x; }
float pow3( const in float x ) { return x*x*x; }
float pow4( const in float x ) { float x2 = x*x; return x2*x2; }
float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }
float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }
// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range.
// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/
highp float rand( const in vec2 uv ) {
const highp float a = 12.9898, b = 78.233, c = 43758.5453;
highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );
return fract( sin( sn ) * c );
}
#ifdef HIGH_PRECISION
float precisionSafeLength( vec3 v ) { return length( v ); }
#else
float precisionSafeLength( vec3 v ) {
float maxComponent = max3( abs( v ) );
return length( v / maxComponent ) * maxComponent;
}
#endif
struct IncidentLight {
vec3 color;
vec3 direction;
bool visible;
};
struct ReflectedLight {
vec3 directDiffuse;
vec3 directSpecular;
vec3 indirectDiffuse;
vec3 indirectSpecular;
};
#ifdef USE_ALPHAHASH
varying vec3 vPosition;
#endif
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {
// dir can be either a direction vector or a normal vector
// upper-left 3x3 of matrix is assumed to be orthogonal
return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );
}
mat3 transposeMat3( const in mat3 m ) {
mat3 tmp;
tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );
tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );
tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );
return tmp;
}
bool isPerspectiveMatrix( mat4 m ) {
return m[ 2 ][ 3 ] == - 1.0;
}
vec2 equirectUv( in vec3 dir ) {
// dir is assumed to be unit length
float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;
float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;
return vec2( u, v );
}
vec3 BRDF_Lambert( const in vec3 diffuseColor ) {
return RECIPROCAL_PI * diffuseColor;
} // validated
vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated
float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );
return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );
} // validated
#include <packing>
// <packing>
vec3 packNormalToRGB( const in vec3 normal ) {
return normalize( normal ) * 0.5 + 0.5;
}
vec3 unpackRGBToNormal( const in vec3 rgb ) {
return 2.0 * rgb.xyz - 1.0;
}
const float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)
const float ShiftRight8 = 1. / 256.;
const float Inv255 = 1. / 255.;
const vec4 PackFactors = vec4( 1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0 );
const vec2 UnpackFactors2 = vec2( UnpackDownscale, 1.0 / PackFactors.g );
const vec3 UnpackFactors3 = vec3( UnpackDownscale / PackFactors.rg, 1.0 / PackFactors.b );
const vec4 UnpackFactors4 = vec4( UnpackDownscale / PackFactors.rgb, 1.0 / PackFactors.a );
vec4 packDepthToRGBA( const in float v ) {
if( v <= 0.0 )
return vec4( 0., 0., 0., 0. );
if( v >= 1.0 )
return vec4( 1., 1., 1., 1. );
float vuf;
float af = modf( v * PackFactors.a, vuf );
float bf = modf( vuf * ShiftRight8, vuf );
float gf = modf( vuf * ShiftRight8, vuf );
return vec4( vuf * Inv255, gf * PackUpscale, bf * PackUpscale, af );
}
vec3 packDepthToRGB( const in float v ) {
if( v <= 0.0 )
return vec3( 0., 0., 0. );
if( v >= 1.0 )
return vec3( 1., 1., 1. );
float vuf;
float bf = modf( v * PackFactors.b, vuf );
float gf = modf( vuf * ShiftRight8, vuf );
// the 0.9999 tweak is unimportant, very tiny empirical improvement
// return vec3( vuf * Inv255, gf * PackUpscale, bf * 0.9999 );
return vec3( vuf * Inv255, gf * PackUpscale, bf );
}
vec2 packDepthToRG( const in float v ) {
if( v <= 0.0 )
return vec2( 0., 0. );
if( v >= 1.0 )
return vec2( 1., 1. );
float vuf;
float gf = modf( v * 256., vuf );
return vec2( vuf * Inv255, gf );
}
float unpackRGBAToDepth( const in vec4 v ) {
return dot( v, UnpackFactors4 );
}
float unpackRGBToDepth( const in vec3 v ) {
return dot( v, UnpackFactors3 );
}
float unpackRGToDepth( const in vec2 v ) {
return v.r * UnpackFactors2.r + v.g * UnpackFactors2.g;
}
vec4 pack2HalfToRGBA( const in vec2 v ) {
vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );
return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );
}
vec2 unpackRGBATo2Half( const in vec4 v ) {
return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}
// NOTE: viewZ, the z-coordinate in camera space, is negative for points in front of the camera
float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {
// -near maps to 0; -far maps to 1
return ( viewZ + near ) / ( near - far );
}
float orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {
// maps orthographic depth in [ 0, 1 ] to viewZ
return depth * ( near - far ) - near;
}
// NOTE: https://twitter.com/gonnavis/status/1377183786949959682
float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {
// -near maps to 0; -far maps to 1
return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );
}
float perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {
// maps perspective depth in [ 0, 1 ] to viewZ
return ( near * far ) / ( ( far - near ) * depth - far );
}
#include <dithering_pars_fragment>
// <dithering_pars_fragment>
#ifdef DITHERING
// based on https://www.shadertoy.com/view/MslGR8
vec3 dithering( vec3 color ) {
//Calculate grid position
float grid_position = rand( gl_FragCoord.xy );
//Shift the individual colors differently, thus making it even harder to see the dithering pattern
vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );
//modify shift according to grid position.
dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );
//shift the color by dither_shift
return color + dither_shift_RGB;
}
#endif
#include <color_pars_fragment>
// <color_pars_fragment>
#if defined( USE_COLOR_ALPHA )
varying vec4 vColor;
#elif defined( USE_COLOR )
varying vec3 vColor;
#endif
#include <uv_pars_fragment>
// <uv_pars_fragment>
#if defined( USE_UV ) || defined( USE_ANISOTROPY )
varying vec2 vUv;
#endif
#ifdef USE_MAP
varying vec2 vMapUv;
#endif
#ifdef USE_ALPHAMAP
varying vec2 vAlphaMapUv;
#endif
#ifdef USE_LIGHTMAP
varying vec2 vLightMapUv;
#endif
#ifdef USE_AOMAP
varying vec2 vAoMapUv;
#endif
#ifdef USE_BUMPMAP
varying vec2 vBumpMapUv;
#endif
#ifdef USE_NORMALMAP
varying vec2 vNormalMapUv;
#endif
#ifdef USE_EMISSIVEMAP
varying vec2 vEmissiveMapUv;
#endif
#ifdef USE_METALNESSMAP
varying vec2 vMetalnessMapUv;
#endif
#ifdef USE_ROUGHNESSMAP
varying vec2 vRoughnessMapUv;
#endif
#ifdef USE_ANISOTROPYMAP
varying vec2 vAnisotropyMapUv;
#endif
#ifdef USE_CLEARCOATMAP
varying vec2 vClearcoatMapUv;
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
varying vec2 vClearcoatNormalMapUv;
#endif
#ifdef USE_CLEARCOAT_ROUGHNESSMAP
varying vec2 vClearcoatRoughnessMapUv;
#endif
#ifdef USE_IRIDESCENCEMAP
varying vec2 vIridescenceMapUv;
#endif
#ifdef USE_IRIDESCENCE_THICKNESSMAP
varying vec2 vIridescenceThicknessMapUv;
#endif
#ifdef USE_SHEEN_COLORMAP
varying vec2 vSheenColorMapUv;
#endif
#ifdef USE_SHEEN_ROUGHNESSMAP
varying vec2 vSheenRoughnessMapUv;
#endif
#ifdef USE_SPECULARMAP
varying vec2 vSpecularMapUv;
#endif
#ifdef USE_SPECULAR_COLORMAP
varying vec2 vSpecularColorMapUv;
#endif
#ifdef USE_SPECULAR_INTENSITYMAP
varying vec2 vSpecularIntensityMapUv;
#endif
#ifdef USE_TRANSMISSIONMAP
uniform mat3 transmissionMapTransform;
varying vec2 vTransmissionMapUv;
#endif
#ifdef USE_THICKNESSMAP
uniform mat3 thicknessMapTransform;
varying vec2 vThicknessMapUv;
#endif
#include <map_pars_fragment>
// <map_pars_fragment>
#ifdef USE_MAP
uniform sampler2D map;
#endif
#include <alphamap_pars_fragment>
// <alphamap_pars_fragment>
#ifdef USE_ALPHAMAP
uniform sampler2D alphaMap;
#endif
#include <alphatest_pars_fragment>
// <alphatest_pars_fragment>
#ifdef USE_ALPHATEST
uniform float alphaTest;
#endif
#include <alphahash_pars_fragment>
// <alphahash_pars_fragment>
#ifdef USE_ALPHAHASH
/**
* See: https://casual-effects.com/research/Wyman2017Hashed/index.html
*/
const float ALPHA_HASH_SCALE = 0.05; // Derived from trials only, and may be changed.
float hash2D( vec2 value ) {
return fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );
}
float hash3D( vec3 value ) {
return hash2D( vec2( hash2D( value.xy ), value.z ) );
}
float getAlphaHashThreshold( vec3 position ) {
// Find the discretized derivatives of our coordinates
float maxDeriv = max(
length( dFdx( position.xyz ) ),
length( dFdy( position.xyz ) )
);
float pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );
// Find two nearest log-discretized noise scales
vec2 pixScales = vec2(
exp2( floor( log2( pixScale ) ) ),
exp2( ceil( log2( pixScale ) ) )
);
// Compute alpha thresholds at our two noise scales
vec2 alpha = vec2(
hash3D( floor( pixScales.x * position.xyz ) ),
hash3D( floor( pixScales.y * position.xyz ) )
);
// Factor to interpolate lerp with
float lerpFactor = fract( log2( pixScale ) );
// Interpolate alpha threshold from noise at two scales
float x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;
// Pass into CDF to compute uniformly distrib threshold
float a = min( lerpFactor, 1.0 - lerpFactor );
vec3 cases = vec3(
x * x / ( 2.0 * a * ( 1.0 - a ) ),
( x - 0.5 * a ) / ( 1.0 - a ),
1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )
);
// Find our final, uniformly distributed alpha threshold (ατ)
float threshold = ( x < ( 1.0 - a ) )
? ( ( x < a ) ? cases.x : cases.y )
: cases.z;
// Avoids ατ == 0. Could also do ατ =1-ατ
return clamp( threshold , 1.0e-6, 1.0 );
}
#endif
#include <aomap_pars_fragment>
// <aomap_pars_fragment>
#ifdef USE_AOMAP
uniform sampler2D aoMap;
uniform float aoMapIntensity;
#endif
#include <lightmap_pars_fragment>
// <lightmap_pars_fragment>
#ifdef USE_LIGHTMAP
uniform sampler2D lightMap;
uniform float lightMapIntensity;
#endif
#include <emissivemap_pars_fragment>
// <emissivemap_pars_fragment>
#ifdef USE_EMISSIVEMAP
uniform sampler2D emissiveMap;
#endif
#include <envmap_common_pars_fragment>
// <envmap_common_pars_fragment>
#ifdef USE_ENVMAP
uniform float envMapIntensity;
uniform float flipEnvMap;
uniform mat3 envMapRotation;
#ifdef ENVMAP_TYPE_CUBE
uniform samplerCube envMap;
#else
uniform sampler2D envMap;
#endif
#endif
#include <envmap_pars_fragment>
// <envmap_pars_fragment>
#ifdef USE_ENVMAP
uniform float reflectivity;
#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )
#define ENV_WORLDPOS
#endif
#ifdef ENV_WORLDPOS
varying vec3 vWorldPosition;
uniform float refractionRatio;
#else
varying vec3 vReflect;
#endif
#endif
#include <fog_pars_fragment>
// <fog_pars_fragment>
#ifdef USE_FOG
uniform vec3 fogColor;
varying float vFogDepth;
#ifdef FOG_EXP2
uniform float fogDensity;
#else
uniform float fogNear;
uniform float fogFar;
#endif
#endif
#include <bsdfs>
// <bsdfs>
float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) {
// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)
return 0.25;
}
float D_BlinnPhong( const in float shininess, const in float dotNH ) {
return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );
}
vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {
vec3 halfDir = normalize( lightDir + viewDir );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );
vec3 F = F_Schlick( specularColor, 1.0, dotVH );
float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ );
float D = D_BlinnPhong( shininess, dotNH );
return F * ( G * D );
} // validated
#include <lights_pars_begin>
// <lights_pars_begin>
uniform bool receiveShadow;
uniform vec3 ambientLightColor;
#if defined( USE_LIGHT_PROBES )
uniform vec3 lightProbe[ 9 ];
#endif
// get the irradiance (radiance convolved with cosine lobe) at the point 'normal' on the unit sphere
// source: https://graphics.stanford.edu/papers/envmap/envmap.pdf
vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {
// normal is assumed to have unit length
float x = normal.x, y = normal.y, z = normal.z;
// band 0
vec3 result = shCoefficients[ 0 ] * 0.886227;
// band 1
result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;
result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;
result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;
// band 2
result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;
result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;
result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );
result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;
result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );
return result;
}
vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );
return irradiance;
}
vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {
vec3 irradiance = ambientLightColor;
return irradiance;
}
float getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {
// based upon Frostbite 3 Moving to Physically-based Rendering
// page 32, equation 26: E[window1]
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );
if ( cutoffDistance > 0.0 ) {
distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );
}
return distanceFalloff;
}
float getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {
return smoothstep( coneCosine, penumbraCosine, angleCosine );
}
#if NUM_DIR_LIGHTS > 0
struct DirectionalLight {
vec3 direction;
vec3 color;
};
uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];
void getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {
light.color = directionalLight.color;
light.direction = directionalLight.direction;
light.visible = true;
}
#endif
#if NUM_POINT_LIGHTS > 0
struct PointLight {
vec3 position;
vec3 color;
float distance;
float decay;
};
uniform PointLight pointLights[ NUM_POINT_LIGHTS ];
// light is an out parameter as having it as a return value caused compiler errors on some devices
void getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {
vec3 lVector = pointLight.position - geometryPosition;
light.direction = normalize( lVector );
float lightDistance = length( lVector );
light.color = pointLight.color;
light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
}
#endif
#if NUM_SPOT_LIGHTS > 0
struct SpotLight {
vec3 position;
vec3 direction;
vec3 color;
float distance;
float decay;
float coneCos;
float penumbraCos;
};
uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];
// light is an out parameter as having it as a return value caused compiler errors on some devices
void getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {
vec3 lVector = spotLight.position - geometryPosition;
light.direction = normalize( lVector );
float angleCos = dot( light.direction, spotLight.direction );
float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );
if ( spotAttenuation > 0.0 ) {
float lightDistance = length( lVector );
light.color = spotLight.color * spotAttenuation;
light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );
light.visible = ( light.color != vec3( 0.0 ) );
} else {
light.color = vec3( 0.0 );
light.visible = false;
}
}
#endif
#if NUM_RECT_AREA_LIGHTS > 0
struct RectAreaLight {
vec3 color;
vec3 position;
vec3 halfWidth;
vec3 halfHeight;
};
// Pre-computed values of LinearTransformedCosine approximation of BRDF
// BRDF approximation Texture is 64x64
uniform sampler2D ltc_1; // RGBA Float
uniform sampler2D ltc_2; // RGBA Float
uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];
#endif
#if NUM_HEMI_LIGHTS > 0
struct HemisphereLight {
vec3 direction;
vec3 skyColor;
vec3 groundColor;
};
uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];
vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {
float dotNL = dot( normal, hemiLight.direction );
float hemiDiffuseWeight = 0.5 * dotNL + 0.5;
vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );
return irradiance;
}
#endif
#include <normal_pars_fragment>
// <normal_pars_fragment>
#ifndef FLAT_SHADED
varying vec3 vNormal;
#ifdef USE_TANGENT
varying vec3 vTangent;
varying vec3 vBitangent;
#endif
#endif
#include <lights_phong_pars_fragment>
// <lights_phong_pars_fragment>
varying vec3 vViewPosition;
struct BlinnPhongMaterial {
vec3 diffuseColor;
vec3 specularColor;
float specularShininess;
float specularStrength;
};
void RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
float dotNL = saturate( dot( geometryNormal, directLight.direction ) );
vec3 irradiance = dotNL * directLight.color;
reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
reflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;
}
void RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {
reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );
}
#define RE_Direct RE_Direct_BlinnPhong
#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong
#include <shadowmap_pars_fragment>
// <shadowmap_pars_fragment>
#if NUM_SPOT_LIGHT_COORDS > 0
varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];
#endif
#if NUM_SPOT_LIGHT_MAPS > 0
uniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];
#endif
#ifdef USE_SHADOWMAP
#if NUM_DIR_LIGHT_SHADOWS > 0
uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
struct DirectionalLightShadow {
float shadowIntensity;
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];
#endif
#if NUM_SPOT_LIGHT_SHADOWS > 0
uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];
struct SpotLightShadow {
float shadowIntensity;
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
};
uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];
#endif
#if NUM_POINT_LIGHT_SHADOWS > 0
uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];
varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];
struct PointLightShadow {
float shadowIntensity;
float shadowBias;
float shadowNormalBias;
float shadowRadius;
vec2 shadowMapSize;
float shadowCameraNear;
float shadowCameraFar;
};
uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];
#endif
/*
#if NUM_RECT_AREA_LIGHTS > 0
// TODO (abelnation): create uniforms for area light shadows
#endif
*/
float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {
return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );
}
vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {
return unpackRGBATo2Half( texture2D( shadow, uv ) );
}
float VSMShadow (sampler2D shadow, vec2 uv, float compare ){
float occlusion = 1.0;
vec2 distribution = texture2DDistribution( shadow, uv );
float hard_shadow = step( compare , distribution.x ); // Hard Shadow
if (hard_shadow != 1.0 ) {
float distance = compare - distribution.x ;
float variance = max( 0.00000, distribution.y * distribution.y );
float softness_probability = variance / (variance + distance * distance ); // Chebeyshevs inequality
softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); // 0.3 reduces light bleed
occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );
}
return occlusion;
}
float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord ) {
float shadow = 1.0;
shadowCoord.xyz /= shadowCoord.w;
shadowCoord.z += shadowBias;
bool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;
bool frustumTest = inFrustum && shadowCoord.z <= 1.0;
if ( frustumTest ) {
#if defined( SHADOWMAP_TYPE_PCF )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx0 = - texelSize.x * shadowRadius;
float dy0 = - texelSize.y * shadowRadius;
float dx1 = + texelSize.x * shadowRadius;
float dy1 = + texelSize.y * shadowRadius;
float dx2 = dx0 / 2.0;
float dy2 = dy0 / 2.0;
float dx3 = dx1 / 2.0;
float dy3 = dy1 / 2.0;
shadow = (
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +
texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )
) * ( 1.0 / 17.0 );
#elif defined( SHADOWMAP_TYPE_PCF_SOFT )
vec2 texelSize = vec2( 1.0 ) / shadowMapSize;
float dx = texelSize.x;
float dy = texelSize.y;
vec2 uv = shadowCoord.xy;
vec2 f = fract( uv * shadowMapSize + 0.5 );
uv -= f * texelSize;
shadow = (
texture2DCompare( shadowMap, uv, shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +
texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),
f.x ) +
mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),
f.y ) +
mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),
f.x ),
mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),
texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),
f.x ),
f.y )
) * ( 1.0 / 9.0 );
#elif defined( SHADOWMAP_TYPE_VSM )
shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );
#else // no percentage-closer filtering:
shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );
#endif
}
return mix( 1.0, shadow, shadowIntensity );
}
// cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D
// vector suitable for 2D texture mapping. This code uses the following layout for the
// 2D texture:
//
// xzXZ
// y Y
//
// Y - Positive y direction
// y - Negative y direction
// X - Positive x direction
// x - Negative x direction
// Z - Positive z direction
// z - Negative z direction
//
// Source and test bed:
// https://gist.github.com/tschw/da10c43c467ce8afd0c4
vec2 cubeToUV( vec3 v, float texelSizeY ) {
// Number of texels to avoid at the edge of each square
vec3 absV = abs( v );
// Intersect unit cube
float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );
absV *= scaleToCube;
// Apply scale to avoid seams
// two texels less per square (one texel will do for NEAREST)
v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );
// Unwrap
// space: -1 ... 1 range for each square
//
// #X## dim := ( 4 , 2 )
// # # center := ( 1 , 1 )
vec2 planar = v.xy;
float almostATexel = 1.5 * texelSizeY;
float almostOne = 1.0 - almostATexel;
if ( absV.z >= almostOne ) {
if ( v.z > 0.0 )
planar.x = 4.0 - v.x;
} else if ( absV.x >= almostOne ) {
float signX = sign( v.x );
planar.x = v.z * signX + 2.0 * signX;
} else if ( absV.y >= almostOne ) {
float signY = sign( v.y );
planar.x = v.x + 2.0 * signY + 2.0;
planar.y = v.z * signY - 2.0;
}
// Transform to UV space
// scale := 0.5 / dim
// translate := ( center + 0.5 ) / dim
return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );
}
float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {
float shadow = 1.0;
// for point lights, the uniform @vShadowCoord is re-purposed to hold
// the vector from the light to the world-space position of the fragment.
vec3 lightToPosition = shadowCoord.xyz;
float lightToPositionLength = length( lightToPosition );
if ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {
// dp = normalized distance from light to fragment position
float dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); // need to clamp?
dp += shadowBias;
// bd3D = base direction 3D
vec3 bd3D = normalize( lightToPosition );
vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );
#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )
vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;
shadow = (
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +
texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )
) * ( 1.0 / 9.0 );
#else // no percentage-closer filtering
shadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );
#endif
}
return mix( 1.0, shadow, shadowIntensity );
}
#endif
#include <bumpmap_pars_fragment>
// <bumpmap_pars_fragment>
#ifdef USE_BUMPMAP
uniform sampler2D bumpMap;
uniform float bumpScale;
// Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen
// https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf
// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)
vec2 dHdxy_fwd() {
vec2 dSTdx = dFdx( vBumpMapUv );
vec2 dSTdy = dFdy( vBumpMapUv );
float Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;
float dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;
float dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;
return vec2( dBx, dBy );
}
vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {
// normalize is done to ensure that the bump map looks the same regardless of the texture's scale
vec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );
vec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );
vec3 vN = surf_norm; // normalized
vec3 R1 = cross( vSigmaY, vN );
vec3 R2 = cross( vN, vSigmaX );
float fDet = dot( vSigmaX, R1 ) * faceDirection;
vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );
return normalize( abs( fDet ) * surf_norm - vGrad );
}
#endif
#include <normalmap_pars_fragment>
// <normalmap_pars_fragment>
#ifdef USE_NORMALMAP
uniform sampler2D normalMap;
uniform vec2 normalScale;
#endif
#ifdef USE_NORMALMAP_OBJECTSPACE
uniform mat3 normalMatrix;
#endif
#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )
// Normal Mapping Without Precomputed Tangents
// http://www.thetenthplanet.de/archives/1180
mat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {
vec3 q0 = dFdx( eye_pos.xyz );
vec3 q1 = dFdy( eye_pos.xyz );
vec2 st0 = dFdx( uv.st );
vec2 st1 = dFdy( uv.st );
vec3 N = surf_norm; // normalized
vec3 q1perp = cross( q1, N );
vec3 q0perp = cross( N, q0 );
vec3 T = q1perp * st0.x + q0perp * st1.x;
vec3 B = q1perp * st0.y + q0perp * st1.y;
float det = max( dot( T, T ), dot( B, B ) );
float scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );
return mat3( T * scale, B * scale, N );
}
#endif
#include <specularmap_pars_fragment>
// <specularmap_pars_fragment>
#ifdef USE_SPECULARMAP
uniform sampler2D specularMap;
#endif
#include <logdepthbuf_pars_fragment>
// <logdepthbuf_pars_fragment>
#if defined( USE_LOGDEPTHBUF )
uniform float logDepthBufFC;
varying float vFragDepth;
varying float vIsPerspective;
#endif
#include <clipping_planes_pars_fragment>
// <clipping_planes_pars_fragment>
#if NUM_CLIPPING_PLANES > 0
varying vec3 vClipPosition;
uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];
#endif
void main() {
vec4 diffuseColor = vec4( diffuse, opacity );
#include <clipping_planes_fragment>
// <clipping_planes_fragment>
#if NUM_CLIPPING_PLANES > 0
vec4 plane;
#ifdef ALPHA_TO_COVERAGE
float distanceToPlane, distanceGradient;
float clipOpacity = 1.0;
#pragma unroll_loop_start
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;
distanceGradient = fwidth( distanceToPlane ) / 2.0;
clipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );
if ( clipOpacity == 0.0 ) discard;
}
#pragma unroll_loop_end
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
float unionClipOpacity = 1.0;
#pragma unroll_loop_start
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;
distanceGradient = fwidth( distanceToPlane ) / 2.0;
unionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );
}
#pragma unroll_loop_end
clipOpacity *= 1.0 - unionClipOpacity;
#endif
diffuseColor.a *= clipOpacity;
if ( diffuseColor.a == 0.0 ) discard;
#else
#pragma unroll_loop_start
for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;
}
#pragma unroll_loop_end
#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES
bool clipped = true;
#pragma unroll_loop_start
for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {
plane = clippingPlanes[ i ];
clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;
}
#pragma unroll_loop_end
if ( clipped ) discard;
#endif
#endif
#endif
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
// <logdepthbuf_fragment>
#if defined( USE_LOGDEPTHBUF )
// Doing a strict comparison with == 1.0 can cause noise artifacts
// on some platforms. See issue #17623.
gl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;
#endif
#include <map_fragment>
// <map_fragment>
#ifdef USE_MAP
vec4 sampledDiffuseColor = texture2D( map, vMapUv );
#ifdef DECODE_VIDEO_TEXTURE
// use inline sRGB decode until browsers properly support SRGB8_ALPHA8 with video textures (#26516)
sampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );
#endif
diffuseColor *= sampledDiffuseColor;
#endif
#include <color_fragment>
// <color_fragment>
#if defined( USE_COLOR_ALPHA )
diffuseColor *= vColor;
#elif defined( USE_COLOR )
diffuseColor.rgb *= vColor;
#endif
#include <alphamap_fragment>
// <alphamap_fragment>
#ifdef USE_ALPHAMAP
diffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;
#endif
#include <alphatest_fragment>
// <alphatest_fragment>
#ifdef USE_ALPHATEST
#ifdef ALPHA_TO_COVERAGE
diffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );
if ( diffuseColor.a == 0.0 ) discard;
#else
if ( diffuseColor.a < alphaTest ) discard;
#endif
#endif
#include <alphahash_fragment>
// <alphahash_fragment>
#ifdef USE_ALPHAHASH
if ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;
#endif
#include <specularmap_fragment>
// <specularmap_fragment>
float specularStrength;
#ifdef USE_SPECULARMAP
vec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );
specularStrength = texelSpecular.r;
#else
specularStrength = 1.0;
#endif
#include <normal_fragment_begin>
// <normal_fragment_begin>
float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;
#ifdef FLAT_SHADED
vec3 fdx = dFdx( vViewPosition );
vec3 fdy = dFdy( vViewPosition );
vec3 normal = normalize( cross( fdx, fdy ) );
#else
vec3 normal = normalize( vNormal );
#ifdef DOUBLE_SIDED
normal *= faceDirection;
#endif
#endif
#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )
#ifdef USE_TANGENT
mat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn = getTangentFrame( - vViewPosition, normal,
#if defined( USE_NORMALMAP )
vNormalMapUv
#elif defined( USE_CLEARCOAT_NORMALMAP )
vClearcoatNormalMapUv
#else
vUv
#endif
);
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn[0] *= faceDirection;
tbn[1] *= faceDirection;
#endif
#endif
#ifdef USE_CLEARCOAT_NORMALMAP
#ifdef USE_TANGENT
mat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );
#else
mat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );
#endif
#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )
tbn2[0] *= faceDirection;
tbn2[1] *= faceDirection;
#endif
#endif
// non perturbed normal for clearcoat among others
vec3 nonPerturbedNormal = normal;
#include <normal_fragment_maps>
// <normal_fragment_maps>
#ifdef USE_NORMALMAP_OBJECTSPACE
normal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0; // overrides both flatShading and attribute normals
#ifdef FLIP_SIDED
normal = - normal;
#endif
#ifdef DOUBLE_SIDED
normal = normal * faceDirection;
#endif
normal = normalize( normalMatrix * normal );
#elif defined( USE_NORMALMAP_TANGENTSPACE )
vec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;
mapN.xy *= normalScale;
normal = normalize( tbn * mapN );
#elif defined( USE_BUMPMAP )
normal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );
#endif
#include <emissivemap_fragment>
// <emissivemap_fragment>
#ifdef USE_EMISSIVEMAP
vec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );
totalEmissiveRadiance *= emissiveColor.rgb;
#endif
// accumulation
#include <lights_phong_fragment>
// <lights_phong_fragment>
BlinnPhongMaterial material;
material.diffuseColor = diffuseColor.rgb;
material.specularColor = specular;
material.specularShininess = shininess;
material.specularStrength = specularStrength;
#include <lights_fragment_begin>
// <lights_fragment_begin>
/**
* This is a template that can be used to light a material, it uses pluggable
* RenderEquations (RE)for specific lighting scenarios.
*
* Instructions for use:
* - Ensure that both RE_Direct, RE_IndirectDiffuse and RE_IndirectSpecular are defined
* - Create a material parameter that is to be passed as the third parameter to your lighting functions.
*
* TODO:
* - Add area light support.
* - Add sphere light support.
* - Add diffuse light probe (irradiance cubemap) support.
*/
vec3 geometryPosition = - vViewPosition;
vec3 geometryNormal = normal;
vec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );
vec3 geometryClearcoatNormal = vec3( 0.0 );
#ifdef USE_CLEARCOAT
geometryClearcoatNormal = clearcoatNormal;
#endif
#ifdef USE_IRIDESCENCE
float dotNVi = saturate( dot( normal, geometryViewDir ) );
if ( material.iridescenceThickness == 0.0 ) {
material.iridescence = 0.0;
} else {
material.iridescence = saturate( material.iridescence );
}
if ( material.iridescence > 0.0 ) {
material.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );
// Iridescence F0 approximation
material.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );
}
#endif
IncidentLight directLight;
#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )
PointLight pointLight;
#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0
PointLightShadow pointLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {
pointLight = pointLights[ i ];
getPointLightInfo( pointLight, geometryPosition, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )
pointLightShadow = pointLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowIntensity, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )
SpotLight spotLight;
vec4 spotColor;
vec3 spotLightCoord;
bool inSpotLightMap;
#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0
SpotLightShadow spotLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {
spotLight = spotLights[ i ];
getSpotLightInfo( spotLight, geometryPosition, directLight );
// spot lights are ordered [shadows with maps, shadows without maps, maps without shadows, none]
#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX
#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS
#else
#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )
#endif
#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )
spotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;
inSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );
spotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );
directLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;
#endif
#undef SPOT_LIGHT_MAP_INDEX
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )
spotLightShadow = spotLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowIntensity, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )
DirectionalLight directionalLight;
#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {
directionalLight = directionalLights[ i ];
getDirectionalLightInfo( directionalLight, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )
directionalLightShadow = directionalLightShadows[ i ];
directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowIntensity, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;
#endif
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )
RectAreaLight rectAreaLight;
#pragma unroll_loop_start
for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {
rectAreaLight = rectAreaLights[ i ];
RE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
}
#pragma unroll_loop_end
#endif
#if defined( RE_IndirectDiffuse )
vec3 iblIrradiance = vec3( 0.0 );
vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );
#if defined( USE_LIGHT_PROBES )
irradiance += getLightProbeIrradiance( lightProbe, geometryNormal );
#endif
#if ( NUM_HEMI_LIGHTS > 0 )
#pragma unroll_loop_start
for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {
irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );
}
#pragma unroll_loop_end
#endif
#endif
#if defined( RE_IndirectSpecular )
vec3 radiance = vec3( 0.0 );
vec3 clearcoatRadiance = vec3( 0.0 );
#endif
#include <lights_fragment_maps>
// <lights_fragment_maps>
#if defined( RE_IndirectDiffuse )
#ifdef USE_LIGHTMAP
vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );
vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;
irradiance += lightMapIrradiance;
#endif
#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )
iblIrradiance += getIBLIrradiance( geometryNormal );
#endif
#endif
#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )
#ifdef USE_ANISOTROPY
radiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );
#else
radiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );
#endif
#ifdef USE_CLEARCOAT
clearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );
#endif
#endif
#include <lights_fragment_end>
// <lights_fragment_end>
#if defined( RE_IndirectDiffuse )
RE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
#endif
#if defined( RE_IndirectSpecular )
RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );
#endif
// modulation
#include <aomap_fragment>
// <aomap_fragment>
#ifdef USE_AOMAP
// reads channel R, compatible with a combined OcclusionRoughnessMetallic (RGB) texture
float ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;
reflectedLight.indirectDiffuse *= ambientOcclusion;
#if defined( USE_CLEARCOAT )
clearcoatSpecularIndirect *= ambientOcclusion;
#endif
#if defined( USE_SHEEN )
sheenSpecularIndirect *= ambientOcclusion;
#endif
#if defined( USE_ENVMAP ) && defined( STANDARD )
float dotNV = saturate( dot( geometryNormal, geometryViewDir ) );
reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );
#endif
#endif
vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;
#include <envmap_fragment>
// <envmap_fragment>
#ifdef USE_ENVMAP
#ifdef ENV_WORLDPOS
vec3 cameraToFrag;
if ( isOrthographic ) {
cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );
} else {
cameraToFrag = normalize( vWorldPosition - cameraPosition );
}
// Transforming Normal Vectors with the Inverse Transformation
vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );
#ifdef ENVMAP_MODE_REFLECTION
vec3 reflectVec = reflect( cameraToFrag, worldNormal );
#else
vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );
#endif
#else
vec3 reflectVec = vReflect;
#endif
#ifdef ENVMAP_TYPE_CUBE
vec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );
#else
vec4 envColor = vec4( 0.0 );
#endif
#ifdef ENVMAP_BLENDING_MULTIPLY
outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_MIX )
outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );
#elif defined( ENVMAP_BLENDING_ADD )
outgoingLight += envColor.xyz * specularStrength * reflectivity;
#endif
#endif
#include <opaque_fragment>
// <opaque_fragment>
#ifdef OPAQUE
diffuseColor.a = 1.0;
#endif
#ifdef USE_TRANSMISSION
diffuseColor.a *= material.transmissionAlpha;
#endif
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#include <tonemapping_fragment>
// <tonemapping_fragment>
#if defined( TONE_MAPPING )
gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );
#endif
#include <colorspace_fragment>
// <colorspace_fragment>
gl_FragColor = linearToOutputTexel( gl_FragColor );
#include <fog_fragment>
// <fog_fragment>
#ifdef USE_FOG
#ifdef FOG_EXP2
float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );
#else
float fogFactor = smoothstep( fogNear, fogFar, vFogDepth );
#endif
gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );
#endif
#include <premultiplied_alpha_fragment>
// <premultiplied_alpha_fragment>
#ifdef PREMULTIPLIED_ALPHA
// Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation.
gl_FragColor.rgb *= gl_FragColor.a;
#endif
#include <dithering_fragment>
// <dithering_fragment>
#ifdef DITHERING
gl_FragColor.rgb = dithering( gl_FragColor.rgb );
#endif
}